Stability of Quantum Dynamics
نویسندگان
چکیده
The stability of quantum systems to perturbations of the Hamiltonian is studied. This stability is quantified by the fidelity, an overlap of an ideal state obtained by the unperturbed evolution, and a perturbed state obtained by the perturbed evolution, both starting from the same initial state. Dependence of fidelity on the initial state as well as on the dynamical properties of the system is considered. In particular, systems having a chaotic or regular classical limit are analysed. The fidelity decay rate is given by an integral of the correlation function of the perturbation and is thus smaller the faster correlation function decays. Quantum systems with a chaotic classical limit can therefore be more stable than regular ones. If the perturbation can be written as a time derivative of another operator, meaning that the time averaged perturbation vanishes, fidelity freezes at a constant value and starts to decay only after a long time inversely proportional to the perturbation strength. In composite systems stability of entanglement to perturbations of the Hamiltonian is analysed in terms of purity. For regular systems purity decay is shown to be independent of Planck’s constant for coherent initial states in the semiclassical limit. The accelerated decoherence of macroscopic superpositions is also explained. The theory of fidelity decay is applied to the stability of quantum computation and an improved quantum Fourier transform algorithm is designed and shown to be more stable against random perturbations.
منابع مشابه
Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملDynamics of entangled quantum optical system in independent media
We study the dynamics of two three-level atoms interacting with independent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created in far astronomical objects. Quantum mechanical behaviour of these particles can produce detectable effects on the spectroscopic identifications of these objects, if such behaviour remain stable during the interaction with their media. It is ...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملInvestigation of Different Solvents and Temperatures Effects on (3,7) Single-Walled Carbon Nanotubes: DFT Study
In this research, we have studied the structural propenies of water. methanol and ethanol surrounding snidewalledcarbon nanotube (SWCNT) and mixed of them either and we have investigated the solvent effects onthe relative energies and dipole moment values by ming molecular dynamics simulation. We used differentforce field it, deterrnaned energy and other type of geometrical parameters, on the p...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004